UNIFORMLY NON-1, ORLICZ SPACES*

BY KONDAGUNTA SUNDARESAN

ABSTRACT

A characterisation of uniformly non- $1_n^{(1)}$ Orlicz space is obtained intrinsically in terms of the Young function determining the Orlicz space. It is shown that a uniformally non- $1_n^{(1)}$ Orlicz space is reflexive.

In a recent paper James [1] conjectured that a uniformly non- $1_n^{(1)}$ Banach space is reflexive. Here it is proposed to establish the conjecture when the Banach space is an Orlicz space. We also obtain an intrinsic characterisation of uniformly non- $1_n^{(1)}$ Orlicz spaces.

We start with the basic terminology and definitions required in what follows. Let (X, S, μ) be a non-atomic measure space and Φ be a non-zero Young function. We adopt the convention $\Phi(u) = \Phi(|u|)$ if u is a real number. The Orlicz set L_{Φ} is the set of all real valued μ -measurable functions f such that $M(f) = \int_X \Phi(f) d\mu < \infty$. It is known, Weiss [5], that L_{Φ} is linear if and only if Φ satisfies the growth condition $\Phi(2u) \leq K\Phi(u)$ for large values of $u(\Phi(2u) \leq k\Phi(u))$ for all $u \geq 0$ if $\mu(X)$ is positive finite (if $\mu(X)$ is infinite). Further the linear space L_{Φ} can be equipped with a norm $\|\cdot\|$ by setting

$$||f|| = \inf \left\{ \frac{1}{\xi} \mid \xi > 0 \text{ and } M(\xi f) \le 1 \right\}.$$

The normed linear space $(L_{\Phi}, \| \|)$ is indeed a Banach space and we denote this Banach space by L_{Φ}^* . For a detailed account of this class of Banach spaces we refer to Luxemburg [2], Weiss[5], and Zaanen [6].

REMARK 1. We assume throughout that paper that Φ satisfies one or the other of the growth conditions ensuring that L_{Φ} is linear. Thus, in particular $\Phi(u)$ is finite for all real u. Since Φ is convex continuous function it follows that if $u \ge v > 0$ and $\Phi(u) \ne 0$ then $\Phi(u) > \Phi(v)$.

REMARK 2. With regard to the functions M(f) and ||f|| we note that $M(f) \le 1$ if and only if $||f|| \le 1$ and M(f) = 1 if and only if ||f|| = 1.

Remark 2 is an easy consequence of the definitions.

DEFINITION 1. (JAMES [1]). A normed linear space B is uniformly non- $1_n^{(1)}$ $(n \ge 2)$ if there exists a positive number δ such that for any n elements x_1, \dots, x_n in B with $||x_i|| \le 1$ it is true that

Received September 6, 1965

^{*} This work was supported in part by Air Force Grant G2A-152015.

$$\left\|\frac{1}{n}(x_1 \pm x_2 \pm \cdots \pm x_n)\right\| \le 1 - \delta$$

for some choice of signs.

REMARK 3. If a positive number δ exists satisfying the above definition then it is clear that $1 > 1 - \delta \ge 1/n$.

In the case when the normed linear space B is the space L_{Φ}^* the definition 1 may be reformulated as follows.

DEFINITION 2. L_{Φ}^{*} is uniformly non- $1_{n}^{(1)}$ if for some positive number ξ , $1 < \xi < n$,

$$M\left(\xi \frac{f_1 \pm f_2 \pm \cdots \pm f_n}{n}\right) \leq 1$$

for some choice of signs where f_1, \dots, f_n are n functions in L_{Φ}^* such that $M(f_i) \leq 1$. The equivalence of definitions 1 and 2 in the case of Banach spaces L_{Φ} follows from Remark 2.

With regard to expressions of the form $u_1 \pm u_2 \pm \cdots \pm u_n$ where $\{u_i\}_{i=1}^n$ are n real numbers we adopt the following notation. For a given n-set of reals $\{u_i\}_{i=1}^n$ once for all we enumerate the 2^{n-1} possible expressions of the above form and designate them as $E_1, E_2, \cdots, E_{2^{n-1}}$, and for K, $1 \le K \le 2^{n-1}$ we denote by U_K the n-vector $(u_1, \pm u_2, \cdots, \pm u_n)$ where the signs in front of the u_i are the same as those occurring in front of u_i in E_K . We define the permutations P_i , $1 \le i \le n$, of any i-vector i-vec

$$S_1(U;\xi) = \sum \Phi \left(\xi \frac{u_1 \pm \cdots \pm u_n}{n}\right)$$

where ξ is a real number, $U = (u_1, \dots, u_n)$ and the summation in the definition of S_1 is over the 2^{n-1} possible choices of signs. We denote by C_iU the *i*th coordinate of the vector U.

We proceed now to obtain characterisations of uniformly non- $1_n^{(1)}$ L_{Φ}^* spaces. We present our characterisations separately in the cases (i) $\mu(X)$ is infinite and (ii) $\mu(X)$ is positive finite.

THEOREM 1. If (X, S, μ) is an infinite non-atomic measure space then L_{Φ}^* is uniformly non- $1_n^{(1)}$ if and only if there exists a real number $\xi, \xi > 1$, such that

$$S_1(U;\xi) \le \frac{2^{n-1}}{n} S(U) \text{ if } u_i \ge 0.$$

Proof. Suppose the function Φ satisfies the inequality in the theorem for some $\xi > 1$. Let $\{f_i\}_{i=1}^n$ be n functions in L_{Φ}^* such that $M(f_i) \leq 1$. The inequality above clearly implies

$$\sum M\left(\xi \, \frac{f_1 \pm f_2 \pm \cdots \pm f_n}{n} \, \right) \leq \frac{2^{n-1}}{n} \, \sum_{i=1}^n \, M(f_i) \leq 2^{n-1}$$

where the summation of the left side of the inequality is over the 2^{n-1} possible choices of signs. Thus there is a choice of signs for which

$$M\left(\xi \frac{f_1 \pm f_2 \pm \cdots \pm f_n}{2}\right) \leq 1.$$

Hence by definition 2, L_{Φ}^* is uniformly non- $I_n^{(1)}$.

Conversely let L_{Φ}^* be uniformly non- $1_n^{(1)}$. Let ξ be a real number assured by definition 2 for such a space. If possible let there be a *n*-vector $U = (u_1, \dots, u_n)$ with coordinates nonnegative reals such that

$$S_1(U;\xi) > \frac{2^{n-1}}{n}S(U)$$
.

Since Φ is convex function satisfying the growth condition $\Phi(2u) \leq K\Phi(u)$ for $u \geq 0$ there exists a positive number λ such that $\Phi(\xi u) \leq \lambda \Phi(u)$ for $u \geq 0$. Hence the inequality above implies S(U) > 0. Since (X, S, μ) is an infinite non-atomic measure space there exist 2^{n-1} pairwise disjoint measurable sets $\{A_i\}_{i=1}^{2n-1}$ such that

$$\mu(A_i) = \frac{n}{2^{n-1} S(U)}$$
. Let $\{A_i^m\}_{m=1}^n$, for $1 \le i \le 2^{n-1}$,

be a measurable partition of A_i such that

$$\mu(A_i^m) = \frac{1}{2^{n-1} S(U)} .$$

Now we define n functions $\{f_i\}_{i=1}^n$ in L_{Φ}^* by setting

$$f_{i} = \sum_{K=1}^{2^{n-1}} \sum_{t=1}^{n} C_{i} T_{t} U_{K} \chi_{A} t_{K}.$$

It is verified that

$$M\left(\xi \frac{f_1 \pm f_2 \pm \cdots \pm f_n}{n}\right) = \frac{nS_1(U;\xi)}{2^{n-1}S(U)} > 1$$

for any combination of signs while $M(f_i) = 1$ for $1 \le i \le n$. Thus a contradiction on the choice of ξ is obtained and the proof of the Theorem is complete.

We proceed to the case when $0 < \mu(X) < \infty$. We state first a definition and establish some auxiliary lemmas.

Following the terminology in Nakano [3] the Banach space L_{Φ}^* is said to be uniformly finite if

$$\sup_{M(f)\leq 1} M(Kf) < \infty$$

for any positive real number K.

LEMMA 1. If L_{Φ}^* is uniformly finite then if $\{f_n\}_{n\geq 1}$ is a sequence of functions in the unit ball of L_{Φ}^* such that $||f_n|| \to 1$ as $n \to \infty$ then $M(f_n) \to 1$ as $n \to \infty$.

The proof of the lemma is an immediate consequence of Th. 4 on p. 224 in Nakano [3].

LEMMA 2. If L_{Φ}^* is uniformly finite and if there exist real numbers t and η 0 < t, $\eta < 1$, such that if $\{f_i\}_{i=1}^n$ are any n functions in the unit ball of L_{Φ}^* with $M(f_i) \ge 1 - t$ for $1 \le i \le n$ then for some choice of signs

$$M\left(\frac{f_1\pm\cdots\pm f_n}{n}\right)\leq 1-\eta$$

 L_{Φ}^{*} is uniformly non- $l_{n}^{(1)}$.

Proof. If L^*_{Φ} is not uniformly non- $1_n^{(1)}$, then for any sequence of reals ξ_j such that $\xi_j > 1$ and $\xi_j \to 1$ there exist n sequences $\{f_i^j\}_{j \ge 1}$, $1 \le i \le n$ in the unit ball of L^*_{Φ} with the property

$$\frac{1}{\xi_i} < \left\| \frac{f_1^j \pm \cdots \pm f_n^j}{n} \right\| \le 1$$

for all choices of signs, Thus

$$\lim_{l \to \infty} \left\| \frac{f_1^j \pm \cdots \pm f_n^j}{n} \right\| \to 1$$

for all choices of signs. Since $||f_i^j|| \le 1$ each of the sequences $\{f_i^j\}_{j \le 1}$ admits a subsequence $\{g_i^j\}_{j \le 1}$ $1 \le i \le n$, such that $\lim_{j \to \infty} ||g_i^j|| \to 1$ for $i, 1 \le i \le n$, and

$$\lim_{j\to\infty} \|\frac{g_1^j \pm \cdots \pm g_n^j}{n}\| \to 1$$

for all choices of signs. Since L^*_{Φ} is uniformly finite, by Lemma 1 $M(g_i^j) \to 1$ as $j \to \infty$ for $1 \le i \le n$, and

$$\lim_{j\to\infty} M\left(\frac{g_i^j\pm\cdots\pm g_n^j}{n}\right)=1$$

for all choices of signs, a contradiction on the inequality in the hypothesis.

LEMMA 3. If (X, S, μ) is a positive finite measure space and if there are two positive numbers λ , ξ and v with $\xi > 1$ such that $\Phi(\xi u) \leq \lambda \Phi(u)$ for $u \geq v > 0$ then L_{Φ}^* is uniformly finite.

Proof. Let K be a positive number. If f is in the unit ball of L_{Φ}^* and t is a positive integer such that $\xi^t > K$ and if

$$E = \{x \mid x \in X, \mid f(x) \mid \leq v\} \text{ then}$$

$$M(Kf) \leq M(\xi^{t}f)$$

$$= \int_{E} \Phi(\xi^{t}f) d\mu + \int_{X \sim E} \Phi(\xi^{t}f) d\mu$$

$$\leq \Phi(\xi^{t}v)\mu(E) + \lambda^{t}M(f)$$

$$\leq \Phi(\xi^{t}v)\mu(X) + \lambda^{t}.$$

Thus $\sup_{M(f) \le 1} M(Kf) < \infty$. Hence L_{Φ}^* is uniformly finite.

THEOREM 2. If (X, S, μ) is a positive finite non-atomic measure space then L_{Φ}^* is uniformly non- $1_n^{(1)}$ if and only if

(i) There exist positive numbers C and ξ , $1 < \xi$, such that

$$S_1(U;\xi) \le \frac{2^{n-1}}{n}S(U)$$
 if $S(U) \ge C > 0$ and $C_iU \ge 0$ for $1 \le i \le n$.

(ii)
$$\Phi\left(\begin{array}{c} v_0 \\ n \end{array}\right) \neq \frac{1}{n}\Phi(v_0) \text{ if } \Phi(v_0) = \frac{n}{\mu(X)}.$$

Proof. Let us assume that L_{Φ}^* is uniformly non- $1_n^{(1)}$. Then definition 2 guarantees the existence of real number $\xi_0 > 1$ such that if $\{f_i\}_{i=1}^n$ are any n functions in the unit ball of L_{Φ}^* then for some choice of signs

$$M\bigg(\xi_0\,\frac{f_1\pm\cdots\pm f_n}{n}\,\bigg)\,\leq\,1.$$

We shall prove that Φ fulfills the condition (i) with the choice of $\xi = \xi_0$. Assuming the contrary there exist non-negative numbers $\{u_i\}_{i=1}^n$ such that

$$S(U) \ge \frac{n}{\mu(X)}$$
 and $S_1(U;\xi) > \frac{2^{n-1}}{n} S(U)$.

Since

$$\mu(X) \geq \frac{n}{S(U)}$$

there exist 2^{n-1} pairwise disjoint measurable sets $\{A_i\}_{i=1}^{2n-1}$ such that

$$\mu(A_i) = \frac{n}{2^{n-1}S(U)}$$
 for $1 \le i \le 2^{n-1}$.

Now we can complete the proof by constructing the functions $\{f_i\}_{i=1}^n$ as in theorem 1 contradicting the choice of ξ_0 . Next we shall show that

$$\Phi\left(\begin{array}{c} v_0 \\ n \end{array}\right) \neq \frac{1}{n} \Phi(v_0).$$

If possible let

$$\Phi\left(\frac{v_0}{n}\right) = \frac{1}{n}\Phi(v_0)$$
. Since $\Phi(v_0) = \frac{n}{\mu(X)}$

and X is a nonatomic measure space there exist n pairwise disjoint measurable sets $\{A_i\}_{i=1}^n$ such that $\Phi(v_0) \mu(A_i) = 1$. Let $f_i = v_0 \chi_{A_i}$ for $1 \le i \le n$. Then clearly $M(f_i) = ||f_i|| = 1$ for $1 \le i \le n$ and for all choices of signs

$$M\left(\xi_0 \frac{f_1 \pm f_2 \pm \cdots \pm f_n}{n}\right) = \sum_{i=1}^n \Phi\left(\frac{v_0}{n}\xi_0\right) \mu(A_i)$$
$$> \sum_{i=1}^n \Phi\left(\frac{v_0}{n}\xi_0\right) \mu(A_i) \ge 1$$

since

$$\Phi\left(\frac{v_0}{n} \ \xi_0\right) > \Phi\left(\frac{v_0}{n}\right)$$

by Remark 1. Hence a contradiction arises on the choices of ξ_0 .

Next we shall prove that if Φ satisfies the inequalities (i) and (ii) then L_{Φ}^* is uniformly non- $1_n^{(1)}$. If Φ satisfies inequality (i) and $\Phi(v_1) = C$ then by choosing the vector U such that $C_iU = u \ge v_1$ it is verified that $\Phi(\xi u) \le 2^{n-1} \Phi(u)$ for all $u \ge v_1$. Thus L_{Φ}^* is uniformly finite by Lemma 3. Since

$$\Phi\left(\frac{v_0}{n}\right) \neq \frac{1}{n} \Phi(v_0)$$

and Φ is continuous it follows by Remark 1 that there exists a real number v_1 such that $0 < v_1 < v_0$, $\Phi(v_1) > 0$, and

$$\Phi\left(\frac{v_1}{n}\right) \neq \frac{1}{n} \Phi(v_1) \neq \frac{1}{n} \Phi(v_0). \text{ Let } \Phi(v_1) = \theta \Phi(v_0) = \theta \frac{n}{\mu(X)}$$

where $0 < \theta < 1$. In the condition (i) we can assume that $C \ge n/\mu(X)$. Let

$$K = \left\{ U \mid U \in R^n \text{ and } \frac{\theta n}{\mu(X)} \le S(U) \le C \right\}.$$

We note that $S_1(U;1) < (2^{n-1}/n) S(U)$ for $U \in K$ as a consequence of Remark 1 and of the inequality $\Phi(v_1/n) < (1/n) \Phi(v_1)$. Since Φ is continuous and K is a compact subset of R^n there exists a real number $\xi_1 > 1$ such that

$$S_1(U;\xi_1) < \frac{2^{n-1}}{n} S(U) \text{ for all } U \in K.$$

Let $\xi_0 = \min(\xi_1, \xi)$. Then for all U such that

$$S(U) \ge \frac{\theta \eta}{\mu}, \ S_1(U;\xi_0) < \frac{2^{n-1}}{n} S(U).$$

Let t be a real number such that $1 - t > \theta$. We shall prove that there exists an η , $1 > \eta > 0$ such that if $\{f_i\}_{i=1}^n$ are n functions in the unit ball of L_{Φ}^* with

$$M(f_i) \ge 1 - t$$
 for $1 \le i \le n$

then for some choice of signs

$$M\left(\frac{f_1\pm f_2\pm\cdots\pm f_n}{n}\right)\leq 1-\eta.$$

Let $E = \{x \mid \sum_{i=1}^n \Phi(f_i(x)) \ge \theta \eta / \mu$. Then we obtain the following inequality.

$$\sum M \left(\frac{f_1 \pm f_2 \pm \cdots \pm f_n}{n} \right) = \sum \int_E \Phi\left(\frac{f_1 \pm f_2 \pm \cdots \pm f_n}{n} \right) d\mu$$

$$+ \sum \int_{X \sim E} \Phi\left(\frac{f_1 \pm \cdots \pm f_n}{n} \right) d\mu$$

$$\leq \frac{1}{\xi_0} \frac{2^{n-1}}{n} \sum_E \Phi(f_i) d\mu + \frac{2^{n-1}}{n} \int_{X \sim E} \Phi(f_i) d\mu$$

$$\leq 2^{n-1} - \left(1 - \frac{1}{\xi_0} \right) 2^{n-1} (1 - t - \theta) \cdots (1)$$

since

$$\sum_{E} \int_{E} \Phi(f_{i}) d\mu \ge n(1-t) - \frac{\theta \eta}{\mu(X)} \mu(X \sim E)$$

$$\ge n(1-t) - n\theta.$$

Setting $1 - \eta = (1 - t - \theta)(1 - 1/\xi_0)$ we obtain from inequality (1) that for some choice of signs

$$M\left(\frac{f_1\pm f_2\pm\cdots\pm f_n}{n}\right)\leq 1-\eta.$$

Hence L_{Φ}^* is uniformly finite and the associated function M(f) satisfies the inequality in Lemma 2. Thus L_{Φ}^* is uniformly non- $1_n^{(1)}$ and the proof of Theorem 2 is complete.

James [1] has shown that a uniformly non- $1_n^{(1)}$ Banach space is reflexive if it has an unconditional basis. Since it is not assumed that μ is separable, the Banach space L_{Φ}^* is not necessarily separable, Luxemburg [2]. However, it will be shown that

every uniformly non- $1_n^{(1)}$ Orlicz space L_{Φ}^* is reflexive. We observe first a consequence of the inequalities in the statements of Theorems 1 and 2. If for some $\xi > 1$,

$$S_1(U;\xi) \le \frac{2^{n-1}}{n} S(U)$$

for every *n*-vector U with non-negative coordinates then choosing U such that $C_1U = u \ge 0$ and $C_iU = 0$ for $0 \le i \le n$ it is verified that (A) for $u \ge 0$,

$$\Phi(\frac{u}{n}\xi) \leq \frac{1}{n}\Phi(u).$$

Similarly if

$$S_1(U;\xi) \le \frac{2^{n-1}}{n} S(U)$$

for U such that $S(U) \ge C > 0$ then there exists a v > 0 such that (B) for all $u \ge v > 0$,

$$\Phi\left(\frac{u}{n}\,\xi\right) \leq \frac{1}{n}\,\Phi(u)\,.$$

If Ψ is the Young's complement of Φ , and if Φ satisfies (A) or (B) then there exists a constant K > 0 such that $\Psi(2u) \leq K\Psi(u)$ for all $u \geq 0$ or $\Psi(2u) \leq K\Psi(u)$ for large values of u according as (A) or (B) is true.

THEOREM 3. If L_{Φ}^* is uniformly non- $l_n^{(1)}$ then it is reflexive.

Proof. Since Φ and Ψ satisfy the growth conditions ensuring that L_{Φ} and L_{ψ} are linear it follows from theorems 4 and 5, Rao [4] that L_{Φ}^* is reflexive.

REFERENCES

- 1. James, Robert C., Uniformly Non-square Banach Spaces, Ann. Math. 3, Vol. 80 (1964), 542-550.
 - 2. Luxemburg, W., Banach Function Spaces, Thesis., Technische Hoge School te Delft, 1955.
 - 3. Nakano, H., Topology and Linear Topological Spaces, Maruzin and Co., Tokyo, 1951.
- 4. Rao, M. M., Linear Functionals on Orlicz Spaces, Nieuw Archief Voor Wiskunde 3, XI (1964), 77-98.
 - 5. Weiss, G., A Note on Orlicz Spaces, Portugaliae Math. 15 (1956) 35-47.
 - 6. Zaanen, A. C., Linear Analysis, North Holland Publishing Co., Amsterdam, 1956.

CARNEGIE INSTITUTE OF TECHNOLOGY PITTSBURGH, PA, U.S.A.